Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Sukeri M. Yusof and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.059$
$w R$ factor $=0.140$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

N-(2-Chlorophenyl)- \mathbf{N}^{\prime}-(4-methoxybenzoyl)thiourea

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$, the dihedral angle between the 2-chlorophenyl and 4-methoxyphenyl groups is $54.12(13)^{\circ}$. The molecule is stabilized by intermolecular C$\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, forming double-column chains arranged parallel to the b axis.

Comment

The molecular structure and dimensions of the title compound, (I), are similar to those of other benzoylthiourea derivatives, such as N-benzoyl- N^{\prime}-(2-chlorophenyl)thiourea (Yusof \& Yamin, 2004) and N-benzoyl- N^{\prime}-phenylthiourea (Yamin \& Yusof, 2003). The molecule maintains its cis-trans configuration with respect to the position of the 4-methoxyphenyl and 2-chlorophenyl groups relative to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds.

(I)

The central carbonylthiourea moiety ($\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 9 / \mathrm{O} 1$), 4-methoxyphenyl (C1-C6/O2/C15) and 2-cholorophenyl (C9$\mathrm{C} 14 / \mathrm{Cl} 1$) fragments are each planar, the maximum deviation being 0.075 (3) A for atom C15. The central carbonylthiourea moiety makes dihedral angles of 9.91 (10) and $44.23(11)^{\circ}$, respectively, with the 4-methoxyphenyl and 2-chlorophenyl fragments. This can be compared with values of 11.96 (9) and $29.36(8)^{\circ}$ for the same angles in N-benzoyl- N^{\prime}-(2-chlorophenyl)thiourea. However, the dihedral angle between the 4methoxyphenyl and 2-chlorophenyl fragments of $54.12(13)^{\circ}$ is

Figure 1
The molecular structure of compound (I), shown with 50% probability displacement ellipsoids. Dashed lines indicate intramolecular hydrogen bonds.

Received 17 August 2004 Accepted 4 October 2004 Online 16 October 2004
larger than the value of $38.67(10)^{\circ}$ for N-benzoyl- N^{\prime}-(2chlorophenyl)thiourea.

There are two intramolecular hydrogen bonds, N 2 $\mathrm{H} 2 \cdots \mathrm{O} 1$ and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~S} 1$ (Table 2), and as a result, two pseudo-six-membered rings (S1-C8-N2-C9-C14-H14 and $\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2$) are formed. In the crystal structure, the molecules are linked by intermolecular interactions, $\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 1^{\mathrm{i}}$ and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 1^{\mathrm{ii}}$ [symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; Table 2], forming double-column chains along the b axis.

Experimental

A solution of 2-(chlorophenyl)aniline ($2.00 \mathrm{~g}, 0.016 \mathrm{~mol}$) in acetone $(50 \mathrm{ml})$ was added dropwise to an acetone solution (50 ml) containing an equimolar amount of 4-methoxyphenylbenzoyl isothiocyanate in a two-necked round-bottomed flask. The solution was refluxed for about 2 h and then cooled in ice. The white precipitate was filtered off and washed with ethanol-distilled water, then dried in a vacuum (yield 87%). Recrystallization from ethanol yielded single crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=320.78$
Monoclinic, $P 2_{1} / n$
$a=13.438(3) \AA$
$b=3.9893(9) \AA$
$c=27.727(6) \AA$
$\beta=99.508(4){ }^{\circ}$
$V=1466.0(5) \AA^{3}$
$Z=4$
$D_{x}=1.453 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
Cell parameters from 2167
reflections
$\theta=1.5-27.0^{\circ}$
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=273(2) \mathrm{K}$
Block, colourless
$0.22 \times 0.19 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.916, T_{\text {max }}=0.938$
7879 measured reflections

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059\)
\(w R\left(F^{2}\right)=0.140\)
\(S=1.19\)
3162 reflections
191 parameters
```

H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{C} 11-\mathrm{C} 10$	$1.731(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.386(3)$
$\mathrm{S} 1-\mathrm{C} 8$	$1.662(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.331(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.377(3)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.415(3)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$-179.3(2)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$177.4(2)$

Figure 2
Packing diagram of (I), viewed down the c axis. Dashed lines indicate the $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.86	1.93	$2.638(3)$	138
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~S} 1$	0.93	2.80	$3.209(3)$	107
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.93	2.80	$3.686(3)$	160
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S}^{\mathrm{ii}}$	0.86	2.87	$3.478(3)$	129

Symmetry codes: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.
After their location in a difference map, all H atoms were placed geometrically in ideal positions and allowed to ride on the parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ (methyl C) or $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamin, B. M. \& Yusof, M. S. M. (2003). Acta Cryst. E59, o151-o152.
Yusof, M. S. M. \& Yamin, B. M. (2004). Acta Cryst. E60, o1403-o1404.

